
LLNL-CONF-405321

Designing Pu600 for
Authentication

G. White

July 11, 2008

Institute of Nuclear Materials Management
Nashville, TN, United States
July 13, 2008 through July 17, 2008

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

LLNL-CONF-405321

Designing Pu600 for Authentication

Greg White
Lawrence Livermore National Laboratory

July 2008

Abstract
Many recent Non-proliferation and Arms Control software projects include an
authentication component. Demonstrating assurance that software and hardware performs
as expected without hidden “back-doors” is crucial to a project’s success. In this context,
“authentication” is defined as determining that the system performs only its intended
purpose and performs that purpose correctly and reliably over many years. Pu600 is a
mature software solution for determining the presence of Pu and the ratio of Pu240 to
Pu239 by analyzing the gamma ray spectra in the 600 KeV region. The project’s goals
are to explore hardware and software technologies which can by applied to Pu600 which
ease the authentication of a complete, end-to-end solution. We will discuss alternatives
and give the current status of our work.

1 - Introduction to Authentication

As we make progress toward the deployment of monitoring systems for nuclear material, two
important goals must be observed: protection of the host country’s sensitive information and assurance to
the monitoring party that the nuclear material is what the host country has declared it to be. These goals
are met by certification in the host country and authentication by the monitoring party. During both
certification and authentication, each side needs to understand all of the operating parameters of the
hardware and software in the deployed system. This paper concentrates on software authentication, but
similar principles apply to hardware authentication, as well as to software and hardware certification.

Authentication is the process of gaining assurance that a system is performing robustly and precisely
as intended. The simpler the system, the easier it is to authenticate. It is important to limit functionality to
only what is needed to satisfy the requirements of the task. Each design decision makes authentication
easier, or harder. For example, a design with Microsoft MS-DOS (which requires a 4.77 MHz processor
and runs on a single 1.44 MB floppy disk) is significantly easier to authenticate than a Windows Vista
installation (which requires an 1 GHz processor 512 MB of memory, and 15 GB of free disk space).1

Simpler hardware, expressed in the number of gates, chips, or boards, is easier to authenticate than more
complex hardware. The same can be said for application and development software.

Other industries have a similar need for authentication. Computers that perform electronic voting2 and
gambling are disparate examples. In previous INMM papers,3,4,5,6 we have discussed a hypothetical
perfect system for authentication, with transparent (to both parties) hardware and software development,
and advocated “open source” hardware and software solutions. We advocated software language choices
that lower authentication costs, specifically comparing procedural languages with object-oriented
languages. In particular, we examined the C and C++ languages, comparing language features, code
generation, implementation details, and executable image size, and demonstrated how these attributes aid
or hinder authentication. We showed that programs in lower level, procedural languages are more easily
authenticated than object-oriented ones. We suggested some possible ways to mitigate the use of object-
oriented programming languages. We described the scope of the software authentication process and the
five methods of software authentication. We then concentrated on different types of source code analysis,

LLNL-CONF-405321

introducing LLNL’s ROSE software tool for automating the authentication of source code. Finally, we
discussed how authentication of binaries is complementary to source code authentication.

2 – Pu600

Pu6007,8 is widely recognized as the preferred method for determining the presence of plutonium and
the Pu240/Pu239 ratio of a sample material using gamma rays. It has a long history of successful
deployments under a wide range of measurement regimes. Pu600 shares a code base with MGA9, which
has a multiple decade lifetime and is available commercially through ORTEC. Pu600 currently runs
under MSDOS on PC-compatible platforms. It is written in FORTRAN and requires approximately a 100
MHz Intel 80486DX processor to obtain quick answers.

3 – Project Goals

The project’s goals are to use Pu600 as a testbed for evaluating technologies and methods to ease
authentication. Pu600 is representative of the kinds of physics codes applied to these types of problems.
Our end-state is a small, simple, single board computer with two or three serial ports. One serial port will
connect to a data acquisition system and the HPGe gamma ray detector. The second serial port will
connect to the computational block, which receives the results of Pu600. An optional third serial port
could be used for debugging or to show intermediate results when it is taking data in the open mode.
Read-Only Memory (ROM) will hold the software, and volatile Random Access Memory (RAM) will
hold the data and intermediate results. The hardware should not include additional features or
functionality and should be fully documented.

The software language choice is critical to the project. To increase portability, we chose to translate
the Pu600 application from FORTRAN to C. FORTRAN compilers tend to be commercial, closed
source, expensive, and not available on all hardware and operating systems. C compilers, in general, are
available in commercial and open source, less expensive, and available for almost all hardware and
operating systems. The C language is procedural and a good choice for authentication.10 It is also critical
that Pu600 retain its dependability, readability, and maintainability after conversion to the C language.
Also, other parts of the system will probably be written in C, so the conversion of Pu600 will decrease the
number of compilers needed in the development system from two to one.

4 – Current Status

There are two general approaches to translating from one computer language to another: manual
conversion, or automated conversion. Manual conversion is tedious and error prone. Historically,
automatic language conversions tended to produce correct, but unreadable and unmaintainable code. An
example of this automatic language conversion is the f2c project.11 In fact, many projects which utilize
this approach continue to develop the original code in FORTRAN, only using the f2c right before giving
it to the C compiler to create an executable. This method adds unneeded complexity to the authentication
process, since it adds the f2c software to the authentication process. Applications converted with f2c run
approximately twice as slow as the original FORTRAN executable. Another option is ForPasC12, but it
is written for MSDOS and has not been actively developed since 1991.

Instead, we found a commercial source-to-source translator from FORTRAN to C that met our
requirements. FOR_C13 by Cobalt Blue produces readable and maintainable code. The FORTRAN and
C versions have similar execution times.14 Conversion options were chosen to maximize readability and
minimize code size. Also, we let FOR_C automatically convert input/output from FORTRAN read,
write, and format statements to fprintf() and fscanf() statements. We chose not to utilize the FOR_C
runtime library, since we didn’t really need it, and not using it decreased the amount of source code for
Pu600.

LLNL-CONF-405321

We have created an automated build and test suite using a collection of sample gamma ray spectra
provided by the original developer of Pu600. The C and FORTRAN versions have been ported to both
Linux and MacOS X using the GNU Compiler Collection. More importantly, from the beginning, all
versions of the code produces the same (character for character) primary output and results as the original
MSDOS FORTRAN executable. This is a critical result with a huge cost savings over a manual
conversion process. We continuously maintain backward equality with the original, trusted version of the
code.

We continue to work to increase the readability of the code. One place where FOR_C didn’t produce
perfect results was in keeping comments with the appropriate source code in all cases. It was a trivial
matter to manually move comments to match their original position. Like similar codes originally written
in FORTRAN decades ago, Pu600 inherited from MGA a large number of GOTO statements. As Cobalt
Blue states on their webpage, “…spaghetti FORTRAN will, unfortunately, result in spaghetti C”. We are
working through the code, manually converting GOTO statements to loops, branches, etc. In fact, we
have reduced the number of GOTO statements by almost half. FOR_C also keeps two copies of loop
variables, one that uses the C convention for array indexing (start at zero), and one that uses the
FORTRAN convention for array indexing (start at one). Where possible, we removed unneeded loop
variables, refactoring code as necessary. We continue to refine and improve the similarity of intermediate
results between the C and FORTRAN versions of Pu600, to increase confidence in the integrity of the
conversion.

To evaluate the software quality of Pu600 (and the conversion process to C) we have collaborated
with LLNL’s Software Quality Assurance Group. We utilized the Gcov15 tool from the GNU Compiler
Collection to assess code coverage. The code coverage result was 68%, which is comparable with the
highest quality, large physics codes used in the DOE ASCI Program. We also assessed the software
quality of the C version of Pu600 using the commercial source code static analysis tool by KlocWork16.

5 – Next Steps

We continue to research suitable hardware and operating system platforms for running the code. We
have been unable to find a commercial hardware platform that meets the needs of authentication and data
protection. Most commercial hardware platforms use large quantities of writable flash memory, which
we cannot use. We are pursuing a collaboration with the Electrical Engineering Department of UC Davis
to produce a custom, open hardware platform to run Pu600 on. Hardware will be tailored to exactly
match the needs of the project. We believe this option could decrease development costs.

Work on porting and demonstrating Pu600 on an open source embedded operating system will
commence shortly. It is important that we continue to use an open source software development tool
chain (such as the GNU Compiler Collection). While we resolve the aforementioned hardware issues, we
will demonstrate Pu600 on interim commercial hardware. We expect to use the eCos17 embedded
operating system. eCos has been used in Brother laser printers and the Iomega HipZip MP3 Player,
which share similarities with our needs. eCos supports a wide range of processors, which allow us
additional flexibility. One of eCos’s strengths is that it offers developers the ability to easily remove
portions of the operating system not needed for a specific application. Over 200 configuration options
can be set. This allows developers to minimize the amount of software used in the system, which will aid
authentication and certification. The eCos operating system can be paired down to occupy only four
kilobytes of memory. We will also explore tradeoffs with running Pu600 without an operating system.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

LLNL-CONF-405321

References

1http://www.microsoft.com/windows/products/windowsvista/editions/systemrequirements.mspx
2 As an aside, a genius co-worker of mine stated, “If I wanted to rig an election with an electronic voting machine,
and if I could choose any computer language to write in to hide my deception in, I’d do it in C++.”
3 White, G., Increasing Inspectability of Hardware and Software for Arms Control and Nonproliferation Regimes,
Proceedings of the INMM 2001 Annual Meeting, Indian Wells, California
4 White, G., Computer Language Choices in Arms Control and Nonproliferation Regimes, Proceedings of the INMM
2005 Annual Meeting, Phoenix, Arizona
5 White, G., Strengthening Software Authentication with the ROSE Software Suite, Proceedings of the INMM 2006
Annual Meeting, Nashville, Tennessee
6 White, G., Tools and Methods for Increasing Trust in Software, Proceedings of the INMM 2007 Annual Meeting,
Tuscon, Arizona
7 Luke, S. J., White, G. K., Archer, D. E., Wolford, J. K., Gosnell, T.B., Verification of the Presense of
Weapons-Quality Plutonium in Sealed Storage Containers for the Trilateral Initiative Demonstration,
Symposium International Safeguards: Verification and Nuclear Material Security, Vienna, Austria,
October 29-November 1, 2001. UCRL-JC-145918, https://e-reports-ext.llnl.gov/pdf/246934.pdf
8 Luke, S. John and Archer, Daniel E., Gamma Attribute Measurements – Pu300, Pu600, Pu900, 41st

Annual Meeting of the Institute of Nuclear Materials Management, New Orleans, LA, July 15-20, 2000,
https://e-reports-ext.llnl.gov/pdf/238167.pdf
9 R. Gunnink, MGA: A Gamma-Ray Spectrum Analysis Code for Determining Plutonium Isotopic
Abundances, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-LR-103220, April 1990,
Vol. 1-2.
10 White, G., Computer Language Choices in Arms Control and Nonproliferation Regimes, Proceedings
of the INMM 2005 Annual Meeting, Phoenix, Arizona
11 http://www.netlib.org/f2c/
12 http://irpcsoft.com/
13 http://www.cobalt-blue.com
14 http://cobalt-blue.com/fc/fcfaqs.htm “With most code, there isn't much difference. Some programs run
faster in C (usually due to faster C compilers), and some run faster in FORTRAN. Integer arithmetic and
native I/O is normally faster in C, whereas complex arithmetic is definitely faster in FORTRAN. Double
precision arithmetic is about the same in both languages.”
15 http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
16 http://www.klocwork.com/
17 http://www.ecoscentric.com/

